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a b s t r a c t

Unsteady viscous flows and Stokes's first problem are examined. Three problems are considered: unsteady
Couette flow, unsteady Poiseuille flow, and unsteady boundary layer flow. The relationship between these
three fundamental unsteady flows and Stokes' first problem is illustrated. Scaling principles are used to
deduce the short time and long time characteristics of these three problems. Asymptotic analysis is used to
obtain exact short and long time characteristics and to show the relationship of each problem to Stokes's
first problem for short times. Finally, compact robust models are developed for all values of time using the
ChurchilleUsagi asymptotic correlation method to combine the short and long time characteristics.

� 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

Stokes's first problem is a fundamental solution in fluid dynamics,
which represents one of the fewexact solutions to theNaviereStokes
equations [1e8]. The problem simply stated, describes the evolution
of the velocity field in the vicinity of an infinite plate which is
impulsively set in motion with constant velocity, U, in an infinite
fluid medium, as shown in Fig. 1. Of primary interest are the rate of
penetration, d, of the velocity field into the fluid and the shear stress
at the surface of the plate, sw.

Three additional problems can be characterized by the Stokes
solution at short times. These are: unsteady Couette flow, unsteady
Poiseuille flow, and unsteady boundary layer flow. In the latter case,
the boundary layer near the leading edge of a semi-infinite plate
will have a characteristic shear stress similar to Blasius flow (or
at long times), while downstream (or at short times) the boundary
layer is similar to that in Stokes flow. The three problems of interest
are shown schematically in Fig. 2.

Each of these problems has been addressed in the fluid literature
using analytical, approximate analytical, or numerical solution
methods. However, they have not all received adequate attention
zychka).

son SAS. All rights reserved.
from the point of view of scaling analysis and asymptotic analysis,
nor have simple models been developed for the wall shear stress. In
the case of unsteady Poiseuille flow, this problem has recently been
addressed by the authors [9]. The key results are included here for
completeness.

This paper addresses each of these three problems and develops
simple compact models for the dimensionless wall shear stress
as a function of dimensionless time. These models are developed
by using scaling principles [10] to deduce the correct asymptotic
behavior, asymptotic analysis to obtain the exact solutions to the
limiting behavior [11], and non-linear superposition to obtain the
compact model [12,13]. In all three cases, the compact models are
compared with the more complex exact solutions. These models
may be used tomodel the transient fluid behavior inmicro-systems
(MEMS) involving liquids or gases providing that non-continuum
effects are minimal.

Compact models are easily developed using the asymptotic
correlation method proposed by Churchill and Usagi [12]. Once the
exact asymptotic behavior of a system of interest is known for short
and long time, these limits are then combined to develop a simple
compactmodel for the dimensionless quantity of interest. In general
form we may write:

y* ¼
h�

y*0
�nþ�y*N�ni1=n (1)
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Nomenclature

A area, m2

Dh hydraulic diameter, h4A=P
h characteristic channel dimension, m
J0ð$Þ Bessel function of first kind order zero
J1ð$Þ Bessel function of first kind order one
L duct or channel length, m
L arbitrary length scale, m
m series index
n asymptotic correlation parameter, Eqs. (1) and (70)
n directed normal, m
p asymptotic correlation parameter, Eq. (71)
p pressure, Pa
P perimeter, m
PoL Poiseuille number, hsL=mw
r radial coordinate, m
s arc length, m
St Strouhal number, x/Ut
t time, s
t* dimensionless time,hnt=L2

u local velocity, m/s
u average velocity, m/s
U surface or stream velocity, m/s
x, y, z Cartesian coordinates, m

y*0 short time asymptote
y*N long time asymptote
y* compact dimensionless model

Greek Symbols
d boundary layer thickness, m
ds boundary layer thickness, m
dm boundary layer thickness, m
dn eigenvalue
h similarity variable
m dynamic viscosity, Ns/m2

n kinematic viscosity, m2/s
r density, kg/m3

sw wall shear stress, Pa

Subscripts
w wall
0 short time value
N long time value
L based on the arbitrary length L

Superscripts
ð,Þ mean value
ð$Þ� dimensionless value
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The correlation parameter n can be either positive or negative. In
the case of n > 0 the asymptotes are combined to give a concave up
function, while for n < 0 the asymptotes are combined to give
a concave down function. Fig. 3, illustrates the case for n < 0.

Once the asymptotes are known, simple criteria for the transi-
tion point can easily be determined by finding the intersection of
the asymptotes:

y*0wy*N (2)

This expression is then solved in closed form to give the nominal
critical value of the independent parameter, which is then used as
a transitional criterion.Wenowproceed toexamine the characteristics
and solutions of four fundamental problems in unsteady viscous flow.
2. Four fundamental problems

Four fundamental problems in unsteady viscous flow are:
Stokes's first problem, unsteady Couette flow, unsteady Poiseuille
flow, and unsteady boundary layer flow. Each is discussed from the
point of view of scaling, asymptotics, and compact modelling.
Fig. 1. Stokes's First Problem.
2.1. Stokes's first problem

One of the most important fundamental problems in
unsteady viscous flows is that of impulsively started motion of
a body in an infinite fluid medium. The simplest problem is
that of suddenly setting an infinite flat plate in motion with
velocity U. This particular problem is often referred to as Stokes's
first problem (Schlichting [2], Currie [3]) and is also referred to
in some texts as the Rayleigh problem (Rosenhead [1], Telionis
[4], Panton [5]).

The momentum transport problem referred to as Stokes's first
problem or Stokes flow [3], requires obtaining the solution to:

vu
vt

¼ n
v2u
vy2

(3)

which is subject to:

y ¼ 0 uð0; tÞ ¼ U
y/N uðy/N; tÞ ¼ 0
t ¼ 0 uðy;0Þ ¼ 0

9=
; (4)

The problem stated above describes viscous diffusion, however
analogous problems in heat andmass diffusion exist. The solution is
easily obtained in terms of the complementary error function.

Before proceeding to an exact solution, we see that a simple
scale analysis can provide much useful information. We assume
that t w t, u w U, and y w d, where d is the boundary layer
thickness or penetration depth of the flow field. Using these
scales we arrive at

U
t
wn

U

d2
(5)

or

dw
ffiffiffiffi
nt

p
(6)



Fig. 2. Three Unsteady Viscous Flow Problems.
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for the penetration depth. Problems in semi-infinite domains are of
the penetration type, i.e., dw

ffiffiffiffi
nt

p
or dw

ffiffiffiffiffiffiffiffiffiffiffi
nx=U

p
. The shear stress at

the plate surface may be approximately obtained as:

sww
mU
d
w

mUffiffiffiffi
nt

p (7)

or, defining a dimensionless shear stress

s*w
swd
mU

w1 (8)

The exact solution is found in terms of the complementary error
function [1e8]:

u
U

¼ 1� erf
�
y=2

ffiffiffiffi
nt

p � ¼ erfc
�
y=2

ffiffiffiffi
nt

p �
(9)

where erfcð$Þ is the complementary error function. The solution is
readily computed in any mathematical software package.

Finally, it is of interest to determine the drag on the plate.
The shear stress is defined as:

sw ¼ �m
vu
vy

���
y¼0

(10)
which becomes:

sw ¼ mUffiffiffiffiffiffiffi
pnt

p (11)

This result agrees with the scaling analysis except for the factor
of 1=

ffiffiffi
p

p
. We may now define the dimensionless shear stress from

Eq. (8)as:

s* ¼ 1ffiffiffi
p

p (12)

The boundary layer thickness may now be obtained using Eq. (9).
The approximate value for d as obtained from Eq. (9) for the case
where u/U ¼ 0.01 gives:

d ¼ 3:643
ffiffiffiffi
nt

p
(13)

We may also define two additional measures of boundary layer
thickness.One is related to the shear stress throughEq. (11)andgives:

ds ¼ ffiffiffi
p

p ffiffiffiffi
nt

p
z1:772

ffiffiffiffi
nt

p
(14)

and the other relates the total mass of fluid set in motion above the
surface of the plate defined as [14]:

Udm ¼
ZN
0

u dy (15)

which gives

dm ¼ 2ffiffiffi
p

p ffiffiffiffi
nt

p
z1:128

ffiffiffiffi
nt

p
(16)

The three thicknesses relate to one another according to:

dm< ds< d (17)

Later, we shall see that the dm definition plays an important role in
the asymptotic results for unsteady Poiseuille flow.

2.2. Unsteady Couette flow

We now re-examine the problem of unsteady Couette flow.
Couette flow has been used as the fundamental method for the

Fig. 3. Asymptotic Model Development.
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Fig. 4. s* for Unsteady Couette Flow.
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measurement of viscosity. Further, it is used in many wall driven
applications as means of estimating the drag force. The problem
requires solution to the following viscous diffusion equation:

vu
vt

¼ n
v2u
vy2

(18)

subject to:

y ¼ 0 uð0; tÞ ¼ U
y ¼ h uðh; tÞ ¼ 0
t ¼ 0 uðy;0Þ ¼ 0

9=
; (19)

2.2.1. Scale analysis
First, the application of scaling principles for short times shows

that the problem is accurately modelled as Stokes flow when

dw
ffiffiffiffi
nt

p
< h

For short time, the wall shear stress scales according to:

s0w
mU
d
w

mUffiffiffiffi
nt

p (20)

and for long time it scales according to

sNw
mU
h

(21)

We may define a dimensionless wall shear stress as:

s* ¼ sw
sN

(22)

This leads to the following results:

s*w
1ffiffiffiffi
t*

p t*/0

s*w1 t*/N

)
(23)

where

t* ¼ nt
h2

(24)

The unsteady Couette flow also has an analogue in transient heat
conduction for a plane wall subject to a sudden step change in
temperature at one surface. In this case t* is replaced by the Fourier
number, at/h2.

2.2.2. Asymptotic analysis
The exact solution may be found in the texts of Sherman [6],

White [7], or Batchelor [8], and is often reported as:

u
U

¼
�
1� y

h

�
� 2

XN
n¼1

sinðnpy=hÞ
np

exp
�� n2p2nt=h2

�
(25)

The solution for very short times requires many terms to ach-
ieve convergence of the velocity field. However, for very short
times, the velocity field has not penetrated far enough into the
fluid to reach the stationary wall. Thus, the solution governed by
Stokes's first problem is valid soon after the flow commences. It
is well known that for t*(0:01, the field can be represented by
Eq. (9).

The shear stress is obtained from:

sw ¼ �m
vu
vy

���
y¼0

(26)
which gives:

sw ¼ mU
h

 
1þ 2

XN
n¼1

exp
�� n2p2nt=h2

�!
(27)

or defining the dimensionless shear stress sw/sN, we obtain

s* ¼ 1þ 2
XN
n¼1

exp
�� n2p2t*

�
(28)

where sN ¼ mU/h. The above equation contains the following
asymptotes:

s* ¼ 1ffiffiffi
p

p ffiffiffiffi
t*

p t*/0

s* ¼ 1 t*/N

)
(29)

which agreewith the scaling results in the order ofmagnitude sense.

2.2.3. Compact model
The dimensionless wall shear may be more easily modelled by

considering the asymptotes above and the following equation using
the approach of Churchill andUsagi [12] and Eq. (1). Using Eq. (1)with
the asymptotes defined by Eq. (29), with at least one knownpoint, one
can solve for n. In the present case, we obtain n z 25/3 to give:

s* ¼
" 

1ffiffiffi
p

p 1ffiffiffiffi
t*

p
!25=3

þ1

#3=25
(30)

which is much more efficient than the series form. The above
equation provides accuracy of � 0.3 percent. It is plotted in Fig. 4
along with data obtained from Eq. (28). The transition point which
may be defined by the intersection of the asymptotes, shows that
steady state is obtained when t* > 1/p z 0.3183.
2.3. Unsteady Poiseuille flow

Unsteady Poiseuille flow is described by the following unsteady
momentum equation:

1
n

vu
vt

¼ �1
m

dp
dz

þ v2u
vx2

þ v2u
vy2

(31)

which is subject to the boundedness condition along the axis of
the geometry, u s N, homogeneous Dirichlet conditions at the
boundary, u ¼ 0, and the initial condition u ¼ 0, when t ¼ 0. The
system is shown in Fig. 2. It consists of an infinitely long duct or
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cylinder of arbitrary but constant cross-sectional area, A, bounded
by perimeter, P.

It is of interest to obtain the area mean velocity, obtained by
integrating the solution for u over the cross-sectional area:

uðtÞ ¼ 1
A

ZZ
A

udA (32)

Also, of interest is the perimeter averaged or mean shear stress
at the surface:

swðtÞ ¼ 1
P

I
m
vu
vn

ds (33)

The dimensionless mean velocity may be defined as:

u* ¼ u

�L21
m
dp
dz

(34)

while the dimensionless shear stress at the surface is defined with
respect to the steady state value:

s* ¼ sw
sN

(35)

where

sN ¼ �A
P
dp
dz

(36)

is obtained from the steady state force balance.

2.3.1. Scale analysis
We now examine what information scale analysis provides. Equa-

tion (31) represents a balance of three quantities: storage, generation,
and diffusion. There are three distinctflow regions in this problem that
may be considered. Fully developed flow exists after a very long time,
andatshort times, thereexistsapotential coreandaverythinboundary
layer region. Eachof these regionsmaybeanalyzedusingscaleanalysis.
The following scales will be used: uwu, t w t, and V2w1=L2 for long
time and V2w1=L2 for short time. Here, L is as yet undetermined
characteristic lengthscale relatedtothegeometryandd is theboundary
layer thickness or penetration scale associated with early times.

First, for long times t/N, or fully developed flow, the balance
between generation and diffusion leads to:

u

L2wG (37)

or

uwGL2 (38)

where G ¼ �1
m
dp
dz. The dimensionless mean velocity becomes:

u* ¼ u

GL2w1 as t/N (39)

Next, for short times t/0, the balance is between storage and
generation, or considering the potential core, this leads to

1
n

u
t
wG (40)

or

uwGnt (41)

or

u*w
nt

L2wt* as t/0 (42)
Next, in the boundary layer region, the balance between storage
and diffusion leads to:

1
n

u
t
w

u

d2
(43)

or

dw
ffiffiffiffi
nt

p
(44)

which is the intrinsic penetration depth.
The flow becomes fully developed when dwL, such that

ntwL2 (45)

or

t*w
nt

L2w1 (46)

Finally, we wish to develop expressions for the mean shear
stress at the surface defined as:

sw ¼ m
vu
vn

(47)

We must consider the two limiting cases of short time and long
time. For long time, t/N, the shear stress becomes:

swwm
u
L (48)

We may also relate the shear stress to the source G for fully
developed flows, where

sN ¼ A
P
mG (49)

Thus, if we define s* ¼ sw=sN, we obtain

s* ¼ u�
A
PGL

�w1 as t/N (50)

Finally, for short times, t/0, the shear stress becomes

sww
mu
d

(51)

Also, from the momentum transport equation we see that

u

d2
wG (52)

or, after combining Eqs. (51) and (52):

swwmGd (53)

Finally defining s* as before, we obtain

s*w
d

A=P
w

ffiffiffiffi
t*

p
L

A=P
as t/0 (54)

It is clear from scaling analysis, that two distinct characteristics are
present. These are the dimensionless mean velocity, u* and
dimensionless mean shear stress, s*. Each has the following
asymptotic behavior:

u*wt* t*/0
u*w1 t*/N

�
(55)

and

s*w
ffiffiffiffi
t*

p
t*/0

s*w1 t*/N

)
(56)
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2.3.2. Asymptotic analysis
The exact asymptotic behavior for small and large times may

now be examined for each dimensionless quantity of interest.
The authors recently addressed these issues in [9], and only a brief
summary is given below.

For long time, t/N, the flow is characterized by a balance
between generation and diffusion. This problem has been analyzed
extensively for momentum transport and solutions to many config-
urations may be found in the literature and reference books. The
results are usually presented in the form of the dimensionless group
fRe, the Fanning friction factor Reynolds number product defined as:

fReL
2

¼ sNL
mu

¼ PoL (57)

where Po is referred to in the fluids literature as the Poiseuille
number [7].

We can further introduce the source term through the fully
developed flow balance Eq. (36) and obtain:

PoL ¼ sNL
mu

¼
A
P
GL
u

(58)

Rearranging, for u and using the definition of the dimensionless
mean velocity, Eq. (34), we obtain

u* ¼ A=P
PoLL (59)

Finally, by virtue of thedefinitionof thedimensionless shear stress, Eq.
(35) and the value for sN, the dimensionless asymptotic limit for s* is:

s* ¼ 1 (60)

For short times, t/0, the transport is characterized by a balance
between generation and storage. The equation of transport which
may be solved in the potential core when d is small is:

1
n

vu
vt

¼ G (61)

This may be integrated and solved with the initial condition
u(0) ¼ 0 to give:

uðtÞ ¼ ntGzuðtÞ (62)

When non-dimensionalized, the solution for short time in the
potential core is:

u* ¼ nt

L2 ¼ t* (63)

The short time shear stress may be found by considering the classic
Stokes solution formomentum transport in an infinitemedium. The
solution for the field resulting from a step change at the surface is:

u ¼ Uerfc
	

y
2
ffiffiffiffi
nt

p



(64)

The result for the boundary layer thickness which accounts for the
meanpenetration of thefield from the surface to the potential core, i.e.
the area under the curve defined by Eq. (64), may be written as [9]:

dmU ¼ 2
ffiffiffiffi
nt

p ZN
0

UerfcðhÞ dh (65)

where h ¼ y=2
ffiffiffiffi
nt

p
, which gives

dm ¼ 2ffiffiffi
p

p ffiffiffiffi
nt

p
z1:128

ffiffiffiffi
nt

p
(66)
Equation (66) accounts for the mean depth of penetration of the
field to the potential region. Although the potential core is in a state
of change, the process is still applicable, since we are interested in
the characteristics of the boundary layer which is bounded by the
surface and the potential core. In the case of momentum transport,
this boundary layer defines the total mass flow, Udm, at any time
which results from the impulsive motion of an infinite flat plate.

Using the above result in Eq. (53) gives:

s* ¼ 2ffiffiffi
p

p PL
A

ffiffiffiffi
t*

p
(67)

In summary, the asymptotic analysis yields:

u* ¼ t* t*/0
u* ¼ A=P

LPoL
t*/N

9>=
>; (68)

and

s* ¼ 2PLffiffiffi
p

p
A

ffiffiffiffi
t*

p
t*/0

s* ¼ 1 t*/N

9>>=
>>; (69)

2.3.3. Compact models
These exact limits may now be combined using the asymptotic

correlation method [12]. The models of interest may now be
written in the following forms:

u* ¼
��
t*
�nþ	 A=P

LPoL


n�1=n
(70)

and

s* ¼
�	

2PLffiffiffi
p

p
A

ffiffiffiffi
t*

p 
p

þ1
�1=p

(71)

The values of n and pmay now be determined from comparisons with
data obtained from the exact solutions for a number of geometries.
ThefittingparametersmaybeobtainedbyeitherapplyingEqs. (70)and
(71)atasingleknownpoint in thetransitionregionorbyusingmultiple
points andminimizing the rootmeansquareerror. In thepresentwork,
the latter method is used to determine the fitting parameters.

When the hydraulic diameter is used as a characteristic length
scale Eqs. (70) and (71) become:

u* ¼
��
t*
�nþ	 1

4PoDh


n�1=n
(72)

and

s* ¼
�	

8ffiffiffi
p

p
ffiffiffiffi
t*

p 
p

þ1
�1=p

(73)

Comparisons were made in [9] with four known analytical solu-
tions: the plane channel, the circular tube, the rectangle, and the
circular annulus. Each of these four geometries are closely related.
The annulus contains as special limits the tube and the channel
results, and the rectangle also contains the channel limit. We only
consider the tube and channel results in this paper.

The solution for the plane channel [15] of width 2h is:

uðy; tÞ ¼Gh2
2

�	
1� y2

h2



� 4

XN
n¼1

sinðdnÞ
d3n

cosðdny=hÞ

� exp
�
� d2nnt=h

2
�#

ð74Þ



0.0001 0.001 0.01 0.1 1 10

t*
0.01

0.1

1

*

Exact, Eq. (77)
Model, Eq. (73)

Fig. 6. s* for the Plane Channel.
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where

dn ¼ ð2n� 1Þp
2

(75)

The exact solutions for mean wall shear and mean velocity are:

u ¼ Gh2
 
1
3
� 2

XN
n¼1

exp
�
� d2nnt=h

2
�

d4n

!
(76)

and the shear stress may be calculated from:

sw ¼ mGh
 
1� 2

XN
n¼1

exp
�
� d2nnt=h

2
�

d2n

!
(77)

Equations (76) and (77) have been used to generate data for compar-
isons to the proposed models. Over the range of 0.0001 < t*<10,
50e200 terms were used in the series as required to achieve conver-
gence. The optimal fitting parameter for u* was found to be n ¼ �1.3
with a root mean square error (RMS) of 6.03 percent. While for s* the
value was found to be p ¼ �6 with a 0.262 percent RMS. Graphical
results are shown in Figs. 5 and 6.

The solution for the circular tube of diameter 2a was obtained
by Szymanski [16] using the separation of variables method. The
solution is widely discussed in many advanced level fluid texts
[1,2,4,7]. The solution is:

uðr; tÞ ¼ Ga2
4

"	
1� r2

a2



�8

XN
n¼1

Joðdnr=aÞ
d3nJ1ðdnÞ

exp
�
�d2nnt=a

2
�#

(78)

where dn are the positive roots of

J0ðdnÞ ¼ 0 (79)

The mean velocity may be found by integrating over the cross-
sectional area

u ¼ Ga2
 
1
8
� 4

XN
n¼1

exp
�
� d2nnt=a

2
�

d3n

!
(80)

and the shear stress is found to be:

sw ¼ mGa
 
1
2
� 2

XN
n¼1

exp
�
� d2nnt=a

2
�

d2n

!
(81)
0.0001 0.001 0.01 0.1 1 10

t*
1E-005

0.0001

0.001

0.01

0.1

u*

Exact, Eq. (76)
Model, Eq. (73)

Fig. 5. u* for the Plane Channel.
Equations (80) and (81) have been used to generate data
for comparisons to the proposed models. Over the range of
0.0001 < t* < 10, 50e200 terms were used in the series as required
to achieve convergence. The optimal fitting parameter for u* was
found to be n¼�1.2 with an RMS error of 6.94 percent. While for s*

the value was found to be p ¼ �2.8 with an RMS error of 2.72
percent. Graphical results are shown in Figs. 7 and 8.

The transition point for the dimensionless shear stress may be
found from the intersection of the asymptotes in Eq. (73). This leads
to t*wð ffiffiffi

p
p

=8Þ2w0:0491. Other solutions for the rectangular duct
[9] and the annulus [17] are examined in [9].
2.4. Unsteady boundary layer flow

The unsteady development of laminar boundary layers has been
considered by several researchers, see Rosenhead [1], Telionis [4] or
Sherman [6]. This particular problem has been tackled using
both approximate analytical and numerical methods. The problem
under consideration is that of impulsively started stream over
a semi-infinite flat plate. In time and space the flow progresses
from a Stokes flow field to a Blasius flow field, as shown in Fig. 2.

The governing equations are continuity and the unsteady
x-momentum equation:

vu
vx

þ vv

vy
¼ 0 (82)
0.0001 0.001 0.01 0.1 1 10

t*
1E-005

0.0001

0.001

0.01

0.1

u*

Exact, Eq. (80)
Model, Eq. (72)

Fig. 7. u* for the Circular Tube.
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and

vu
vt

þ u
vu
vx

þ v
vu
vy

¼ n
v2u
vy2

(83)

which are subject to the following boundary and initial conditions:

y ¼ 0 u; v ¼ 0
y/N u ¼ U
x ¼ 0 u ¼ U
t ¼ 0 u ¼ 0

9>>=
>>; (84)

As we shall see, an important parameter in the solution of this
problem is the grouping:

Ut
x

¼ 1
St

(85)

where St is one form of the Strouhal number [4]. The characteristics
of this problem are such that at long times, Ut/x >> 1, the flow is
steadyand thewall shear is governed by Blasius flow. For short times,
Ut/x<< 1, theflow is unsteadyandwall shear is obtained fromStokes
flow. Conversely, similar characteristics are obtained when x is small,
i.e. near the leading edge, Ut/x >> 1, and when x is large, i.e. down-
stream from the leading edge, Ut/x << 1.

A connection between Stokes flow and Blasius flow was first
illustrated by Rayleigh [1]. Rayleigh [1] suggested that the Blasius
problem could be modelled using an Oseen approximation
whereby for steady flows, Eq. (83) could be replaced by

U
vu
vx

¼ n
v2u
vy2

(86)

which may be written as Eq. (3) if t ¼ x/U. This leads to the solution
for linearized Blasius problem of the form

uðhÞ
U

¼ erf

 
y

2
ffiffiffiffiffiffiffiffiffiffiffi
nx=U

p
!

(87)

If we consider the effective residence time defined by t ¼ x/U,
the drag co-efficient becomes:

Cf ;x ¼ 2ffiffiffi
p

p
ffiffiffiffiffiffiffiffiffi
m

rUx

r
¼ 1:128ffiffiffiffiffiffiffiffi

Rex
p (88)

which over predicts laminar boundary layer theory, which yields
a constant 0.664. Rayleigh suggested that t¼ x/0.346Uwith no proof.
This value of the effective time gives a constant 0.6638. A more
general approach can be taken by linearizing the laminar boundary
layer equations by formally defining an effective velocity [18].

Fig. 8. s for the Circular Tube.
This approach gives a similar value for the effective residence time as
obtained by Rayleigh, but with a more formal approach.

Using the equations for unsteady boundary layer flow, the
correct asymptotic characteristics will be obtained, and a simple
model developed for the shear stress.

2.4.1. Scale analysis
Application of scaling analysis to Eqs. (82) and (83) yields

several important characteristics. First, the continuity equation
gives the transverse velocity scale:

vw
Ud
x

(89)

For short times, wemay neglect the inertia terms in Eq. (83) and
we obtain:

d0w
ffiffiffiffi
nt

p
(90)

and

s0w
mU
d0

(91)

while for long times, we neglect the transient term, and obtain:

dNw

ffiffiffiffiffi
nx
U

r
(92)

and

s0w
mU
dN

(93)

Finally, we see that the ratio of the short time and long time
boundary layer thicknesses yields:

d0
dN

w

ffiffiffiffiffiffi
Ut
x

r
(94)

If we define a dimensionless shear stress according to s/s0 we
then obtain the following dimensionless scales:

s*0w1
Ut
x
/0

s*0w
ffiffiffiffiffiffi
Ut
x

r
Ut
x
/N

9>>>=
>>>;

(95)

2.4.2. Asymptotic analysis
Stewartson [19] obtained an approximate solution to the unsteady

boundary layer flow by linearizing the momentum equation using an
Oseen approximation. The results were given as piecewise solution:

u ¼ Uerf
	

y
2
ffiffiffiffi
nt

p



Ut
x

< 1

u ¼ Uerf

 
1
2
y

ffiffiffiffiffi
U
nx

r !
Ut
x

> 1

9>>>>>=
>>>>>;

(96)

These approximate results illustrate how the flow transitions from
a Stokes flow to a Blasius flow. However, this approximation is
only valid near the leading edge of the plate. Stewartson [19] also
obtained solutions using the momentum integral equation. Stew-
artson's [19] results for the wall shear were found to be in good
agreement with the limits of Stokes flow and Blasius flow:

sw ¼ 0:534rU
ffiffiffiffiffiffiffi
n=t

p Ut
x

� 2:65

sw ¼ 0:328rU
ffiffiffiffiffiffiffiffiffiffiffi
Un=x

p Ut
x

� 2:65

9>>=
>>; (97)
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Fig. 9. s* for Unsteady Boundary Layer Flow.
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These results show abrupt transition from one type of flow to the
other. In fact this transition is not as abrupt and generally occurs in
the range of 2 <

ffiffiffiffiffiffiffiffiffiffi
Ut=x

p
< 4. We may now examine the exact

asymptotes for the wall shear using:

s0 ¼ 0:565rU
ffiffiffiffiffiffiffi
n=t

p Ut
x

� 2:65

sN ¼ 0:332rU
ffiffiffiffiffiffiffiffiffiffiffi
Un=x

p Ut
x

� 2:65

9>>=
>>; (98)

The approximate transition point may be obtained by equating
the two asymptotes, s0 w sN, to obtain Ut/x w 2.90 w 3. We may
also define a dimensionless wall shear s* ¼ s/s0. This leads to the
following dimensionless asymptotes:

s*0 ¼ 1
Ut
x

� 3

s*N ¼ 0:587

ffiffiffiffiffiffi
Ut
x

r
Ut
x

� 3

9>>>>=
>>>>;

(99)

2.4.3. Compact models
These asymptotesmay be combined using Eq. (1) with nz 11, in

the form

s* ¼
2
41þ

 
0:587

ffiffiffiffiffiffi
Ut
x

r !11
3
51=11 (100)

The accompanying plot in Fig. 9, shows the nature of the transition
from Stokes flow to Blasius flow. The data pointswere obtained using
the procedure outlined in Sherman [6] and Dwyer [20]. Comparison
of the abovemodelwith thenumerical data yieldsnz 11. This simple
robustmodel provides ameans to establish the transient response for
a semi-infinite plate subjected to an impulsively started stream.
3. Summary and conclusions

The present work re-examined three fundamental unsteady
viscous flow problems: unsteady Couette flow, unsteady Poiseuille
flow, and unsteady boundary layer flow. Their link to Stokes's first
problem was established by means of scaling and asymptotic
analysis. Asymptotic results were combined using the Church-
illeUsagi [12] method, to develop robust compact models for the
dimensionless mean wall shear stress. These new models provide
accurate results and an alternative to using more complex series
solutions or graphical results.
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